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ABSTRACT

Let R and S be two vectors of real numbers whose entries have the
same sum. In the transportation problems, one wishes to find amatrix
A with row sum vector R and column sum vector S. If, in addition, the
two vectors only contain nonnegative integers then one wants the
same to be true for A. This can always be done and the transportation
algorithm gives a method for explicitly calculating A. We can restrict
things even further and insist that A have only entries zero and one.
In this case, the Gale-Ryser Theorem gives necessary and sufficient
conditions for A to exist and this result can be proved constructively.
One can let the dihedral group D4 of the square act on matrices.
Then a subgroup of D4 defines a set of matrices invariant under the
subgroup. So one can consider analogues of the transportation and
(0, 1) problems for these sets of matrices. For every subgroup, we give
conditions equivalent to the existence of the desired type of matrix.
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1. Introduction

LetD4 be the dihedral group of the square.Writeρθ for rotation counter-clockwise through
θ radians and rm for reflection in a line of slopem. Then

D4 = {ρ0, ρπ/2, ρπ , ρ3π/2, r0, r+1, r−1, r∞}.

The non-identity elements of D4 are uniquely identified by their subscripts, and we let
Db ≤ D4 be the cyclic subgroup generated by the element with subscript b. There are also
two subgroups of D4 isomorphic to the Klein 4-group, namely

D× = {ρ0, ρπ , r+1, r−1}

and
D+ = {ρ0, ρπ , r0, r∞}.

The subscripts ofD× andD+ are mnemonic, geometrically representing the two reflection
lines in each subgroup. A complete list of non-identity subgroups of D4 is

Dπ/2 = D3π/2,Dπ ,D0,D+1,D−1,D∞,D×,D+,D4.
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We can consider each of the elements ofD4 as acting on the set ofm×nmatrices, where
we think of the matrix as a rectangle and have the centre of rotation or line of reflection
go through the centre of the matrix. Note that for the elements ρπ/2, ρ3π/2, r+1 or r−1 we
need to assume m = n in order for a matrix to be carried to one of the same form. For
each of the subgroups Db where b is one of the 8 subscripts given above, we consider the
transportation (both real and integral) and (0, 1)-problems for those matrices invariant
under the action of Db. We call the resulting classes of matrices dihedral matrix classes.
The cases Dπ and D× were considered in a paper of Brualdi and Ma [1]. The invariant
matrices forDπ are the so-called centrosymmetricmatrices. SinceDπ is a subgroup ofD×,
the invariant matrices for D× are also centrosymmetric. As pointed out in [1], there are
centrosymmetric matrices that are not invariant under D×. For example, the matrix

⎡
⎢⎢⎣

0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

⎤
⎥⎥⎦

is centrosymmetric but is not invariant under either of the two reflections r+1 and r−1.
Given a real matrix A we let R = R(A) and S = S(A) be the row sum and column sum

vectors ofAwith components ri = ri(A) and sj = sj(A), respectively.We letT (R, S)denote
the corresponding transportation classwhich consists of all nonnegative real matrices with
row sum vector R and column sum vector S. We also use the notation

T b(R, S) = {A ∈ T (R, S) | DbA = A}

and

T b
Z

(R, S) = {A ∈ T b(R, S) | A ∈ Z
m×n}.

For the (0, 1)-problem, A(R, S) and Ab(R, S) denote the subsets of T (R, S) and T b(R, S),
respectively, whose entries are 0 and 1. In all cases we assume, without specificmention, the
obvious necessary condition for our classes to be nonempty, namely that�R = �S where,
for any matrix X, �X is the sum of the entries of X. We assume, also without specific
mention, that in discussing T b

Z
(R, S) and Ab(R, S), the vectors R, S have nonnegative

integral components. Finally, for Ab(R, S), we always assume that R and S have no
component bigger than n andm, respectively.

Recall that we can obtain an element T ∈ T (R, S) by letting

ti,j = risj
N

(1)

where N = �R = �S.
If we wish to construct a matrix T ∈ TZ(R, S), then we can use the transportation

algorithm. Pick any ri and sj. If ri ≤ sj then let ti,j = ri, remove the ith row of T and the
corresponding component of R, and replace S by the vector obtained by decreasing its jth
component by ri. If sj ≤ ri then we apply the same construction with the roles of the rows
and columns reversed. If ri = sj it does not matter which of the two possibilities we use.
We then iterate the process until all row and column sums are as they should be.
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ForA(R, S), one must be more careful. Given a nonnegative integral vector R, we let R↓
denote the weakly decreasing rearrangement ofR, and we letR∗ denote the conjugate ofR↓
viewed as an integer partition. Note that R∗ is weakly decreasing by definition. Given two
weakly decreasing vectors R = (r1, r2, . . . , rm) and S = (s1, s2, . . . , sn), we say R majorizes
S and write R � S, if for all indices �

r1 + r2 + · · · + r� ≥ s1 + s2 + · · · + s� (2)

and �R = �S. We also write S 	 R and say that S is majorized by R. If R, S are not
necessarily weakly decreasing, then we define R � S (or S 	 R) to mean R↓ � S↓. The
Gale-Ryser Theorem (see e.g. [2]) asserts that A(R, S) 
= ∅ if and only

S 	 R∗ (the Gale-Ryser condition). (3)

If (3) holds, then we can construct an elementA ∈ A(R, S) using the Gale-Ryser algorithm
as follows.

(1) Pick any j and set the entries in column j with the largest sj row sums equal to one
and the rest of the entries equal to zero, breaking ties arbitarily,

(2) Replace R by the vector obtained by decreasing its largest sj entries by one (using
tie breaking as determined in (1)). Replace S by the vector obtained by removing sj
and return to the first step until both vectors are zeroed out.

It will be helpful to have the following notation. For a nonegative integer n, let

ň = �n/2 and n̂ = �n/2�.

Also, if A is a matrix, then Ri and Sj will always denote the ith row and jth column of A,
respectively.

Our goal in this paper is to determine underwhat conditions the various dihedralmatrix
classes, as determined by the subgroups of D4, are nonempty.

2. The rotation ρπ

Asmentioned in the introduction, these centrosymmetric matrices were considered in [1].
So here we content ourselves with stating their results. In order to state themmore clearly,
we assume some obvious necessary conditions. Clearly a matrix invariant under ρπ must
have palindromic row and column sum vectors. We say that a palindromic vector R =
(r1, r2, . . . , rn) is initially nonincreasing provided that r1 ≥ r2 ≥ · · · ≥ rň. By permuting
within upper rows andwithin lower rows, and similarly for the columns, a centrosymmetric
matrix can always be assumed to have initially-nonincreasing row and column sumvectors.
Theorem 1: We have T π(R, S) 
= ∅ if and only if R and S are palindromic. The same is
true for T π

Z
(R, S).

Theorem 2:

(i) Let m and n be even. Then Aπ(R, S) 
= ∅ if and only if R and S are palindromic and
S 	 R∗.

(ii) Let m be odd and n be even, the case where m is even and n odd being similar. Assume
that R and S are initially nonincreasing, palindromic vectors with rm̂ even. Let vectors
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R′ and S′ be obtained, respectively, by deleting rm̂ from R and by decreasing by one
the first and last rm̂/2 entries of S. Then Aπ(R, S) 
= ∅ if and only if Aπ(R′, S′) 
= ∅.

(iii) Let m and n both be odd, and assume that R and S are initially nonincreasing,
palindromic vectors with rm̂ and sn̂ of the same parity. Let vectors R′ and S′ be
obtained, respectively, by deleting rm̂ and by decreasing by 1 the first and last �sn̂/2
entries of R, and by deleting sn̂, and by decreasing by 1 the first and last �rm̂/2 entries
of S. Then Aπ(R, S) 
= ∅ if and only if Aπ(R′, S′) 
= ∅.

3. The reflections r−1 and r+1

In this section we will consider the subgroups D−1,D+1, and D× generated by the reflec-
tions r−1 and/or r+1.
Theorem 3: We have T −1(R, S) 
= ∅ if and only if R = S The same is true for T −1

Z
(R, S).

Proof: The proofs for the arbitrary and integral cases are the same. To see the forward
implication, it suffices to observe that r−1, which is ordinary matrix transposition, inter-
changes the row and column sum vectors of a matrix. For the reverse, merely note that if
R = S then the diagonal matrix diag (r1, . . . , rn) provides a desired matrix.

Given a vector S = (s1, s2, . . . , sn), we denote its reversal by

Sr = (sn, . . . , s2, s1).

The next result follows from Theorem 3 and the fact that if r+1A = A if and only if A
can be obtained by rotation through π/2 radians of a matrix A′ with r−1A′ = A′ (i.e.
transposition with respect to the antidiagonal).
Theorem 4: We have T +1(R, S) 
= ∅ if and only if S = Rr The same is true for T +1

Z
(R, S).

Now we consider what happens for the subgroup D× = {ρ0, ρπ , r+1, r−1}.
Theorem 5: We have T ×(R, S) 
= ∅ if and only if

(a) R = S, and
(b) R is palindromic.

The same is true for T ×
Z

(R, S).

Proof: We will do both the arbitrary and integral cases at the same time. The forward
direction follows immediately from Theorems 3 and 4. On the other hand, if we are given
(a) and (b) then it is easy to verify that

A = diag (r1/2, . . . , rn/2) + antidiag (r1/2, . . . , rn/2) (4)

is an element in T ×(R, S). And for T ×
Z

(R, S) one merely rounds up the elements in the
diagonal matrix and rounds down those in the antidiagonal matrix.

We now deal with the case of (0, 1)-matrices. For r−1 this follows from a result of
Fulkerson et al. [3] . See [2, p.179–182] for details.
Theorem 6: We have A−1(R, S) 
= ∅ if and only if R = S and R 	 R∗.

Note that Theorem 6 is equivalent to the fact that, forR = S, there is a symmetricmatrix
in A(R,R) if and only if A(R,R) 
= ∅.
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The following result follows from the previous one in the same way that Theorem 4
follows from Theorem 3.
Theorem 7: We have A+1(R, S) 
= ∅ if and only if S = Rr and Rr 	 R∗.

The nonemptiness of A×(R,R) was characterized in [1] as follows.
Theorem 8: We have A×(R,R) 
= ∅ if and only if Aπ(R,R) 
= ∅.

Recall that the characterization for Aπ(R, S), and thus for A×(R,R) is given in
Theorem 2.

4. The reflections r∞ and r0

In this section, we will consider the subgroups generated by the reflections r∞ and/or r0.
First, however, we introduce some useful notation. Call an integral matrix A even if all its
entries are even. Also let o(A) be the number of odd entries of A. Given an integral vector
R and an odd positive integer n, we define AR to be the m × n (0,1)-matrix whose only
nonzero entries are aRi,n̂ for the indices i such that ri is odd. Given an integral vector S and
odd positive integer m, we define AS in a similar way. This could create some ambiguity,
but we will be careful to use only superscripts involving R and S so that it will always be
clear whether we are referring to rows or columns. Finally, given R, S and both m and n
are odd we define A+ by

a+
i,j = max{aRi,j, aSi,j}. (5)

In other words, A+ = AR +AS except in the case when the central elements of both R and
S are odd in which case the central entry of the sum is too large by one.
Theorem 9:

(I) We have T ∞(R, S) 
= ∅ if and only if
(a) S is palindromic.

(II) We have T ∞
Z

(R, S) 
= ∅ if and only if (a) is true and
(b) if n is even then R is even, and if n is odd then sn̂ ≥ o(R).

Proof: (I) For the forward implication, take A such that r∞A = A. Since r∞ exchanges
columns equidistant from the vertical mid-line of A, we must have that S is a palindromic.
For the other direction, it suffices to show that Equation (1) defines a matrix with palin-
dromic S-vector. Indeed, using the fact that S is palindromic,

ti,n−j+1 = risn−j+1

N
= risj

N
= ti,j.

(II) First, we note that if r∞A = A then ai,j = ai,n−j+1 for all i, j. Thus when n is even
every element in the ith row is repeated twice and R is even. On the other hand, if n is odd
then ri is odd if and only if ai,n̂ is odd. This gives the inequality in (b).

For the reverse implication, we modify the transportation matrix algorithm as follows.
We will describe the case when n is odd as the even case is similar. Let R = R − R(AR)

and S = S − S(AR). Note that R is even by definition of AR and S still has nonnegative
entries because of (b). Construct A ∈ T ∞

Z
(R, S) by letting a1,1 = a1,n = min{r1/2, s1} and

applying recursion. For the central column, one does not divide the row sum by two. Now
form A ∈ T ∞

Z
(R, S) by adding one to the ai,n̂ for all i such that ri is odd.
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The next result follows from Theorem 9 in the same way that Theorem 4 follows from
Theorem 3.
Theorem 10:

(I) We have T 0(R, S) 
= ∅ if and only if
(a) R is palindromic.

(II) We have T 0
Z

(R, S) 
= ∅ if and only if (a) is true and
(b) if m is even then S is even, and if m is odd then rm̂ ≥ o(S).

We now consider the subgroup D+ = {ρ0, ρπ , r0, r∞}.
Theorem 11: We have T +(R, S) 
= ∅ if and only if T ∞(R, S) 
= ∅ and T 0(R, S) 
= ∅. The
same is true in the integral case.

Proof: The forward directions follow immediately from the fact that

T +(R, S) = T ∞(R, S) ∩ T 0(R, S).

The converse for T +(R, S) is proved in the usual way using (1). For T +
Z

(R, S), we use a
method similar to the one given in the proof of Theorem 9. We consider the vectors R =
R−R(A+) and S = S−S(A+).We then construct amatrixA bymaking assignments a1,1 =
a1,n = am,1 = am,n = min{r1/2, s1/2} and recursing with appropriate modifications if in
a central row or column. Finally, we let A = A + A+.

Theorem 12: We have A∞(R, S) 
= ∅ if and only if conditions (a) and (b) from Theorem
9 are satisfied as well as

(c) S 	 R∗ where R is obtained from R by subtracting one from every odd component
and S is S if n is even or S with column Sn̂ removed if n is odd.

Proof: Clearly if A ∈ A∞(R, S) then it must satisfy the two conditions from Theorem 9.
If n is even then R = R and S = S so that R∗ � S by the Gale-Ryser Theorem. In n is odd,
note that the ones in column Sn̂ must occur exactly in the rows with odd sums. Removing
this column, we obtain a matrix A with R and S as its row and column vector. Since such a
matrix exists, we must have R∗ � S by the Gale-Ryser Theorem again.

For the converse, we have two cases. First suppose that n is even. Then sinceR is even we
must have every element of R∗ repeated twice. Let R∗

1 be R
∗ where we only take one out of

every pair of repeated elements. Similarly, let S1 = (s1, . . . , sň). Since R = R and S = S, (c)
implies that S 	 R∗. It follows that S1 	 R∗

1 . Now use the Gale-Ryser algorithm to create a
matrix B ∈ A(R1, S1). It follows that we have a block matrix A = [B r∞B] ∈ A∞(R, S).

Now consider the case when n is odd. Since n − 1 is even, R is an even vector, S is
palindromic, and S 	 R∗ we can proceed as in the previous case to construct a matrix
A ∈ A∞(R, S). Finally, we get the desired matrix A by inserting a middle column Sn̂ in A
which has ones in exactly the rows of R with odd sum.

One might ask if (d) could be replaced by the ordinary Gale-Ryser condition S 	 R∗.
But this condition is not strong enough to imply A∞(R, S) 
= ∅. For an example of this,
consider R = (6, 6, 6, 2, 1, 1) and S = (4, 4, 2, 2, 2, 4, 4). Clearly S is palindromic and it
is easy to check that S 	 R∗. Now suppose, towards a contradiction, that there exists
A ∈ A∞(R, S). Form the matrix A as in the first paragraph of the preceding proof. Then
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A has row and column vectors R = (6, 6, 6, 2) and S = (4, 4, 2, 2, 4, 4). But R∗ does not
majorize S which contradicts the Gale-Ryser Theorem.

As with previous cases, the result for symmetry under r∞ is similar to the one for r0.
Theorem 13: We have A0 
= ∅ if and only if conditions (a) and (b) from Theorem 10 are
satisfied as well as

(c) S 	 R∗ where S is obtained from S by subtracting one from every odd component and
R is R if m is even or R with column Rn̂ removed if n is odd.

Finally, we consider the (0, 1)-case for D+.
Theorem 14: We have A+(R, S) 
= ∅ if and only if conditions (a) and (b) from both
Theorems 9 and 10 are satisfied as well as

(c) if n is odd then o(R) = sn̂, if m is odd then o(S) = rm̂, and
(d) Š 	 Ř∗ where Ř = (ř1, ř2, . . . , řm̌) and Š = (š1, š2, . . . , šň).

Proof: Suppose first that A ∈ A+(R, S). Then clearly conditions (a) and (b) from both
Theorems 9 and 10 are satisfied. To obtain (c) of the present result, note that condition
(c) of Theorem 12 must also hold. So, in particular, �R∗ = �S and this gives the desired
equality when n is odd. The case whenm is odd follows similarly fromTheorem 13. Finally,
Ř and Š are the row- and column-sum vectors for the submatrix Ǎ of A sitting in the first
m̌ rows and the first ň columns. Thus Ř∗ � Š follows from the Gale-Ryser Theorem.

For the converse, assume first thatm and n are odd. By condition (d) and the Gale-Ryser
Theorem, we can construct an ň × m̌ matrix Ǎ with row sum vector Ř and column sum
vector Š. Now, the current condition (c) and condition (a) from Theorems 9 and 10 imply
that there is an m̌ × 1 matrix B, a 1 × ň matrix C, and am̂,n̂ ∈ {0, 1} such that the block
matrix

A =
⎡
⎣ Ǎ B r∞Ǎ

C am̂,n̂ r∞C
r0Ǎ r0B ρπ Ǎ

⎤
⎦

is in A+(R, S). If eitherm or n is even then condition (b) from Theorems 9 and 10 implies
that deleting the appropriate row or column in A above will give a matrix with the correct
row and column sums to be in A+(R, S).

5. The caseDπ/2

We start, as usual, with the transportation problem.
Theorem 15:

(I) We have T π/2(R, S) 
= ∅ if and only if
(a) R = S, and
(b) R is palindromic.

(II) We have T π/2
Z

(R, S) 
= ∅ if and only if R, S satisfy (a) and (b) as well as one of
(c) r1 + r2 + · · · + rň is even, or
(d) n is odd and rn̂ ≥ 2.

Proof: (I) For the forward direction, suppose A ∈ T π/2(R, S). Then ρπ/2Ri = Ci which
implies R = S. And ρ2

π/2Ri = ρπRi is Rn−i read backwards so that (b) holds.
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For the converse, it suffices to show that when (a) and (b) hold then the matrix defined
by (1) is invariant under ρπ/2. But this follows since

tn−j+1,i = rn−j+1si
N

= sn−j+1ri
N

= risj
N

= ti,j.

(II) We will first consider the case when n is even. Given A ∈ T π/2
Z (R, S), we can write

A in the block form

A =
[

B ρ3
π/2B

ρπ/2B ρ2
π/2B

]
(6)

where B is ň × ň. Since R is palindromic by (a), it follows that

r1 + r2 + · · · + rň = �B + �(ρ3
π/2B) = 2�B

so that (c) holds.
Now suppose, for n still even, that we are given (a)–(c). For any matrix B, the matrix

A = A(B) defined by (6) is invariant under ρπ/2. Thus, it suffices to show that we can
define B so that A has the given row and column sums. We will define B = D+ P whereD
is a diagonal matrix and P is a (0, 1)-matrix with at most one 1 in every row and column.
Define D by di,i = ři for 1 ≤ i ≤ ň. It follows that A(D) has rows sums 2ři = ri if ri is
even or ri − 1 if ri is odd. We use the matrix P to correct for the odd row sums as follows.
Because of (c), there are an even number of ri which are odd, 1 ≤ i ≤ ň. Let those ri be
ri1 , ri2 , . . . , ri2k . Let P be the (0, 1)-matrix with 1’s in positions (i1, i2), . . . , (i2k−1, i2k). Now
A = A(B) will have one added to row i2j−1 by B and to row i2j by ρ3

π/2B for 1 ≤ j ≤ k and
similarly for the rows below the midpoint. It follows that A has the correct row sums and
we are done with the case n even.

We now deal with n odd. If A ∈ T π/2
Z

(R, S) then, similarly to the n even case, we write

A =
⎡
⎢⎣ B C ρ3

π/2B
ρπ/2C an̂,n̂ ρ3

π/2C
ρπ/2B ρ2

π/2C ρ2
π/2B

⎤
⎥⎦ (7)

where B is ň × ň and C is ň × 1. If (c) holds, then we are done. If not, then consider

r1 + r2 + · · · + rň = 2�B + �C.

By our assumption about the left-hand side we must have �C odd and so, in particular,
�C ≥ 1. But then

rn̂ = 2�C + an̂,n̂ ≥ 2

and so (d) holds.
Finally, we must prove the converse when n is odd. If (c) holds, then we can construct

the matrix B as when n is even, take C to be a zero matrix, and set an̂,n̂ = rn̂ to obtain a
matrix with the desired row and column sums. If, instead, (d) holds then there are an odd
number of ri which are odd, 1 ≤ i ≤ ň. Let those ri be ri1 , ri2 , . . . , ri2k+1 . Construct that
matrix B as for n even using ri1 , ri2 , . . . , ri2k . Let C be the matrix which is all zeros except
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for its i2k+1 entry which is one. And define an̂,n̂ = rn̂ −2 ≥ 0 by the assumption in (d). It is
now an easy matter to verify that we again have the desired sums in rows and columns.

For the (0, 1)-case we will need the following result of Brualdi and Ryser [2, Theorem
6.3.2] about symmetric matrices whose entries are zeros, ones, and twos.
Theorem 16: Let R = (r1, . . . , rn) be a vector of nonnegative integers. There exists a
symmetric (0, 1, 2)-matrix M with row sum vector R if and only if

2|I||J| ≥
∑
i∈I

ri −
∑
j 
∈J

rj (8)

for all I , J ⊆ {1, 2, . . . , n}.
Wenote that if in the previous theoremwehaveRweakly decreasing (and the row vector

of any symmetric matrix can be brought to this form by row and column interchanges),
then it suffices to check the considerably smaller set of inequalities

2kl ≥
∑
i≤k

ri −
∑
i>l

ri

for all 1 ≤ k ≤ l ≤ n.
Theorem 17: We have Aπ/2(R, S) 
= ∅ if and only if conditions (a)–(d) of Theorem 15
hold and R satisfies the inequalities (8) where

R =
{

(r1, r2, . . . , rň) if n is even,
(r1 − 1, r2 − 1, . . . , rs − 1, rs+1, rs+2, . . . , rň) if n is odd,

and s = �rn̂/2.
Proof: We begin with the case when n is even. Suppose first that A ∈ Aπ/2(R, S). We have
already shown that conditions (a)–(c) must be satisfied. For the last condition, note that
since rπ/2A = A and n is even this matrix must have the form (6) for some (0, 1)-matrix
B. It follows thatM = B+ Bt is a symmetric (0, 1, 2)-matrix. Furthermore, for i ≤ n/2 we
have

ri(M) = ri(B) + ri(Bt) = ri(B) + ci(B) = ri(B) + ri(ρ3
π/2B) = ri(A). (9)

It follows from Theorem 16 that Rmust satisfy (8).
For the converse, using Theorem 16 again we may assume that there exists a symmetric

(0, 1, 2)-matrix M with R(M) = R. We claim that in fact there exists such an M with no
ones on the diagonal. Indeed, using the symmetry ofM we have

r1 + · · · + rn/2 = �M = 2
∑
i<j

mi,j +
∑
i

mi,i.

Since the left-hand side is even by condition (c), the same must be true of
∑

i mi,i. And
because the only odd entries of M are ones there must be an even number of them on
M’s diagonal, say the entries (i, i) for i = i1, i2, . . . , i2k. Consider the pair of ones on the
diagonal in positions i2j−1 and i2j for 1 ≤ j ≤ k. Then there are three possibilities for the
2 × 2 submatrix of M in the rows and columns indexed by i2j−1 and i2j depending on
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which of the three integers 0, 1, 2 appear in the off-diagonal spots. In each case, substitute
the submatix on the left in the following table with the corresponding submatrix on the
right. It is easy to check that this does not change the row and column sums ofM, and now
M has only zeros and twos on the diagonal.

initial submatrix substituted submatrix

[
1 0
0 1

] [
0 1
1 0

]

[
1 1
1 1

] [
0 2
2 0

]

[
1 2
2 1

] [
2 1
1 2

]

We now write M = B + Bt with the entries of the (0, 1)-matrix B defined as in the
following chart for i ≤ j. Note that from what we have just proved, ifmi,j = mj,i = 1 then
we must actually have i < j.

entries ofM entries of B
mi,j = mj,i = 0 bi,j = bj,i = 0
mi,j = mj,i = 1 bi,j = 0, bj,i = 1
mi,j = mj,i = 2 bi,j = bj,i = 1

Finally, we define A using the matrix B as in (6). This matrix is clearly symmetric under
rπ/2 and has the correct row and column sum vectors by conditions (a) and (b) and the
equalities in (9).

Now suppose that n is odd. By interchanging rows and columns, we can assume that R
satisfies r1 ≥ r2 ≥ · · · ≥ rň. Note that if there exists an A ∈ Aπ/2(R, S) then it must have
the form given in (7). First, we claim that there is A ∈ Aπ/2(R, S) if and only if there is
such a matrix where all the ones in C precede all the zeros. To prove the forward direction
(the converse being trivial), suppose that the given matrix A has a zero before a one in C.
Without loss of generality we can assume the zero is in row i and the one in row i + 1.
But ri ≥ ri+1 so that in some column of A we must have a zero followed by a one in these
rows. Suppose that this column is in B as the case when it is in ρ3

π/2B is similar. So, taking
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account of symmetry, we have the situation depicted in (10) below:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1
0 1

0 1 1 0

1 0

1 0
0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

Now interchanging submatrices
[
1 0
0 1

]
↔

[
0 1
1 0

]

in four different places maintains both the symmetry and the row sum vector while
exchanging ai,n̂ = 0 and ai+1,n̂ = 1. Continuing in this way, we can put all the ones
in C before all the zeros.

Note that by its definition, s is the number of ones in C. So existence of A ∈ Aπ/2(R, S)
is equivalent to having such an A with ones in the first s rows of C and zeros elsewhere in
that submatrix. Removing the central row and column of A, we see that this is equivalent
to having a matrix with an even number of rows and columns which has R as the first half
of its palindromic row sum vector, where R is as given in the statement of the theorem for
n odd. So the case for n odd reduces to the case when n is even and we are done.

6. The groupD4 itself

We finally deal with the full dihedral group.
Theorem 18:

(I) We have T 4(R, S) 
= ∅ if and only if
(a) R = S, and
(b) R is palindromic.

(II) We have T 4
Z

(R, S) 
= ∅ if and only if (a) and (b) hold as well as
(c) if n is even then R is even, and if n is odd then rn̂ ≥ o(R).

Proof: (I) The forward direction follows from Theorem 5 and the fact that D× ⊆ D4. For
the reverse implication, it is easy to verify that if (a) and (b) are true then thematrix defined
by (4) is invariant under D4.

(II) Similar to (I), the forward implication comes from Theorems 5 and 11. For suffi-
ciency, when n is even we use (4). When n is odd, we let Ǎ be the matrix defined as in (4)
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but with all fractions rounded down. It follows that A = Ǎ + A+ is the desired matrix,
where the entries of A+ are defined by (5).

For our final result, we characterize the (0, 1)-case.
Theorem 19: We have A4(R, S) 
= ∅ if and only if conditions (a) and (b) of Theorem 18
hold as well as

(c) if n is even then R is even, if n is odd then o(R) = rn̂, and
(d) Ř 	 Ř∗ where Ř = (ř1, ř2, . . . , řň).

Proof: Necessity follows from the previous result and Theorem 14. For the reverse impli-
cation, suppose first that n is even. By condition (d) and Theorem 6, there is an ň× ňmatrix
B with row and column sum vector Ř which is symmetric under matrix transposition. It
follows that the matrix A defined by (6) is invariant under D4 and has the correct row and
column sums by (c). When n is odd we construct B as in the even case, then a matrix Ǎ as
in (7) where C and an̂,n̂ are all zero, and finally let A = Ǎ + A+ with entries given by (5).
Again, it is easy to see that A has the desired properties.
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